Biomechanical Differences Between Femtosecond Lenticule Extraction (FLEx) and Small Incision Lenticule Extraction (SmILE) Tested by 2D-Extensometry in Ex Vivo Porcine Eyes

Bogdan Spiru,1 Sabine Kling,2 Farhad Hafezi,2–4 and Walter Sekundo1

1Department of Ophthalmology, Philipps University of Marburg, Department of Ophthalmology, Baldingerstr 1, 35043 Marburg, Germany
2Laboratory of Ocular Cell Biology, Center for Applied Biotechnology and Molecular Medicine, University of Zurich, Zurich, Switzerland
3ELZA Institute, Dietikon/Zurich, Switzerland
4University of Southern California-Los Angeles, Los Angeles, California, United States

Purpose. To evaluate the biomechanical stability of ex vivo porcine corneas after femtosecond lenticule extraction (FLEx) and small incision lenticule extraction (SmILE) refractive surgeries.

Methods. Forty-five porcine eyes were equally divided into three groups: Groups 1 and 2 were treated with FLEx and SmILE procedure, respectively. Group 3 served as control. A refractive correction of −14 diopters (D) with a 7-mm zone using either a 160-μm flap (FLEx) or a 160-μm cap (SmILE) was performed. For two-dimensional (2D) elastic and viscoelastic biomechanical characterization, two testing cycles (preconditioning stress–strain curve from 1.27 to 12.5 N, stress–relaxation at 12.5 N during 120 seconds) were conducted. Young’s modulus and Prony constants were calculated.

Results. At 0.8% of strain, FLEx (370 ± 36 kPa) could resist a significantly lower stress than SmILE (392 ± 19 kPa, P = 0.046) and the control group (402 ± 30 kPa, P = 0.013). Also, FLEx (46.1 ± 4.5 MPa) had a significantly lower Young’s modulus than the control group (50.2 ± 3.4 MPa, P = 0.008). The Young’s modulus of SmILE (48.6 ± 2.5 MPa) had values situated between untreated corneas and FLEx-treated corneas. When compared to untreated controls, the stress resistance decreased by 8.0% with FLEx and 2.5% with SmILE; Young’s modulus decreased by 5.1% with FLEx and 1.04% with SmILE. With a cap-based procedure, both anterior cap and stromal bed carry the intraocular pressure, while in a flap-based procedure, only the stromal bed does.

Conclusions. Compared to flap-based procedures like FLEx, the cap-based technique SmILE can be considered superior in terms of biomechanical stability, when measured experimentally in ex vivo porcine corneas.

Keywords: SmILE, flap, cap, extensometry, biomechanic

Today, several sophisticated excimer laser systems are available for laser refractive surgery, with laser-assisted in situ keratorefractive (LASIK) being the most popular procedure. In 2006, Sekundo and coworkers presented a procedure called femtosecond lenticule extraction (FLEx) with first results published in 2008.1 In FLEx, both the flap and the refractive lenticule are created in a one-cut procedure using a femtosecond laser. To date, 5-year results are available showing a remarkable stability of the achieved refractive outcome.2 However, apart from being a fast one-cut procedure with less healing response compared to femto-LASIK,3 FLEx did not offer any additional benefits compared to the widespread femto-LASIK since it also required the creation of a flap, hence weakening the anterior cornea. The next development stage of pure femtosecond laser corneal refractive surgery was the small incision lenticule extraction (SmILE)4 introduced by Sekundo in 2008 and published in 2011.5 Meanwhile, 5-year follow-up results of SmILE have been published.5 Unlike in FLEx, SmILE does not require a flap and the lenticule is extracted via a 2- to 3-mm incision leaving the remaining anterior stroma and Bowman’s layer untouched. Per manufacturer of the VisuMax laser, by the end of 2016 over 600,000 procedures (Muehlhoff D, unpublished observations, 2016) had been performed worldwide, with numbers steadily increasing. There is also a large body of peer-reviewed literature, reviews,6 and textbooks7 available. The reason for the wide use of SmILE is its minimally invasive approach that offers several advantages such as more postoperative comfort, less neurotrophic keratopathy, and a presumed better preservation of biomechanical stability, among others.

Corneal biomechanical properties are key elements in the development of disease states such as keratoconus and keratectasia. Also, the success of corneal surgeries depends not only on biological, but also on biomechanical factors. Therefore, the better we understand the biomechanical response of corneal tissue, the more precisely we may predict...
Corneal Weakening After FLEX Versus SmILE

surgical outcomes and manage postoperative complications. As SmILE supposedly is superior in preserving corneal integrity when compared to flap-based procedures like FLEX or LASIK, it is reasonable to assume that SmILE may also show more biomechanical stability. Reinstein et al. further elaborated this hypothesis with a mathematical model estimating the relative differences in postoperative stromal tensile strength following PRK (photorefractive keratectomy), LASIK, and SmILE procedures. A numerical study by Roy et al. suggests an increase in residual stromal stress after LASIK, but not after SmILE procedures. Only few experimental studies have analyzed differences in the in vivo corneal deformation response following an air puff, but they did not find a significant difference between FLEX and SmILE procedures. It should be noted that the corneal deformation response following an air puff is very sensitive to changes in corneal thickness, which might have masked the subtle differences between FLEX and SmILE in this setup. In addition, the strain during air-puff deformation is induced very rapidly; this makes it impossible to retrieve long-term viscoelastic properties, which are particularly important for the stability after refractive surgery. Therefore, air-puff deformation may not be a good indicator for long-term resistance after refractive surgery.

Although several systems (including air-puff tonometers and Brillouin microscopy) have been developed to estimate the corneal biomechanical properties in vivo, the most accurate tests are destructive, in terms of measuring the actual corneal stress–strain relationship and hence the calculation of the Young’s modulus, and can be performed only in ex vivo tissue. One-dimensional stress–strain testing is the gold standard in mechanical engineering. In ex vivo measurements of the corneal tissue it faces the problem that the stress distribution is not representative of the natural stress situation in the eye implied by the intraocular pressure (IOP). While inflation procedures. Only few experimental studies have analyzed differences in the in vivo corneal deformation response following an air puff, but they did not find a significant difference between FLEX and SmILE procedures.

To our knowledge, this is the first experimental study about corneal biomechanics using this sealing technique. Directly after the surgical intervention, corneal buttons were excised and preserved in Stem Alpha.1 (Stem Alpha, Saint-Genis-l’Argenti`ere, France) until the biomechanical measurements were performed.

Biomechanical Characterization

For 2D biomechanical measurements, corneoscleral buttons were excised and mounted circumferentially within a customized holder17 on a commercial stress–strain extensometer/indenter (ZiLo, Zwick GmbH & Co., Ulm, Germany). The load was applied three-dimensionally on the posterior cornea by means of a 10-mm-diameter indenter, representing the IOP. This way, the indentation mode of the extensometer could be used to apply a tensile stress. A model assuming a homogeneously thick tissue was applied to quantify the resulting corneal deformation. The central displacement in vertical direction was measured as a function of stress and converted into strain. Strain \(\varepsilon \) is defined as the relative amount of material deformation (i.e., extension) resulting from the applied stress and was calculated with

\[
\varepsilon = \frac{\Delta L}{2R} \cdot \sin^{-1}\left(\frac{2\Delta R}{\Delta^2 + R^2}\right) - 1. \tag{1}
\]

Stress \(\sigma \) is defined as the externally applied force per cross-sectional area and was calculated with

\[
\sigma = \frac{F}{A}
\]
Corneal Weakening After FLEX Versus SmILE

RESULTS

Stress–Strain

At 0.8% of strain (Fig. 1), FLEX (370 ± 36 kPa) could resist a significantly lower stress than SmILE (392 ± 19 kPa, P = 0.046) and the control group (402 ± 30 kPa, P = 0.013). Also, FLEX (46.1 ± 4.5 MPa) had a significantly lower Young’s modulus (Fig. 2) than the control group (50.2 ± 3.4 MPa, P = 0.008). The Young’s modulus of SmILE (48.6 ± 2.5 MPa) had values situated between untreated corneas and FLEX-treated corneas, but the difference did not reach the level of statistical significance in comparison to FLEX (P = 0.065) or controls (P = 0.159). Compared to untreated controls, the stress resistance decreased by 8.0% with FLEX and 2.5% with SmILE; the Young’s modulus decreased by 5.1% with FLEX and 1.04% with SmILE.

Stress–Relaxation

The Table presents the short- and long-term moduli obtained from viscoelastic parameter fitting. P values were corrected with the Bonferroni method for multiple comparison. No statistically significant differences were observed.

DISCUSSION

There is a widespread presumption in the refractive community that cap-based refractive procedures such as SmILE...

TABLE. Viscoelastic Material Properties Obtained From Fitting a Two-Element Prony Series to the Stress Relaxation Curve

<table>
<thead>
<tr>
<th></th>
<th>E1</th>
<th>E2</th>
<th>E∞</th>
<th>E0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modulus (MPa)</td>
<td>1.71</td>
<td>1.47</td>
<td>0.47</td>
<td>3.65</td>
</tr>
<tr>
<td>SD (MPa)</td>
<td>0.39</td>
<td>0.13</td>
<td>0.12</td>
<td>0.28</td>
</tr>
<tr>
<td>SmILE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modulus (MPa)</td>
<td>1.6</td>
<td>1.58</td>
<td>0.52</td>
<td>3.69</td>
</tr>
<tr>
<td>SD (MPa)</td>
<td>0.5</td>
<td>0.11</td>
<td>0.09</td>
<td>0.28</td>
</tr>
<tr>
<td>FLEX</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modulus (MPa)</td>
<td>1.53</td>
<td>1.51</td>
<td>0.51</td>
<td>3.54</td>
</tr>
<tr>
<td>SD (MPa)</td>
<td>0.29</td>
<td>0.86</td>
<td>0.11</td>
<td>0.21</td>
</tr>
</tbody>
</table>

None of the parameters showed statistically significant differences between conditions.
weaken the cornea less than flap-based procedures,9 because the creation of a flap severs both the Bowman’s layer and the anterior, biomechanically stronger, lamellae of the human cornea.32 A recent finite element method (FEM) study9 also showed that the mechanical stress distribution after SmILE remains similar to the geometry analog control, while after LASIK the stress in the flap is reduced, and the stress in the residual stromal bed is increased, respectively. Hence, this suggests that after flap-based procedures such as FLEX, the flap does not contribute to support the IOP any longer and therefore, the thicker the flap and the higher the correction, the stronger the mechanical weakening. Also, according to the FEM simulations,9 after SmILE, the anterior part of the cap is still supporting the remaining cornea and able to take up mechanical stress. Therefore, we may assume that with cap-based surgery, the mechanical weakening depends solely on the thickness of the lenticule. Our results are in line with these assumptions, showing a stronger mechanical weakening after FLEX than SmILE, given that in FLEX the effective stromal thickness that provides mechanical resistance is reduced by 100-\textmu m flap + 255-\textmu m correction, in SmILE only by 255-\textmu m correction.

In this regard, also no difference is to be expected between FLEX and femto-LASIK since in both procedures a flap is cut and the same amount of tissue (lenticule in FLEX and “ablation” in femto-LASIK) is removed. We chose to perform FLEX as a representative for a flap-based procedure simply due to practical reasons. To date, the presumption of different biomechanical behavior between cap- and flap-based techniques is not sufficiently backed up by experimental evidence in the literature.

Reinstein et al.8 calculated the remaining tensile strength of the postoperative human cornea using a mathematical model. They estimated 54\% remaining tensile strength after LASIK as compared with 75\% after SmILE assuming a 110-\textmu m flap and a 130-\textmu m cap and 110 \textmu m of stromal tissue removal. A recent ex vivo study in human eyes (Gapsis BC, et al. IOVS 2016;57:ARVO E-Abstract 2395) reported a similar corneal strength reduction after SmILE and LASIK with high refractive corrections (\textapprox 8 D).

However, it is important to note that the refractive correction was performed over an optical zone of 6.5 mm, while the mechanical test was performed only in the central 3.5 \times 3.5-mm area. This implies that flap and cap were clamped to the stromal bed, which is not comparable to the condition in the patient. In this case no mechanical difference can be expected. Also, in vivo measurements of corneal biomechanics after SmILE and LASIK surgery using air-puff deformation systems are inconclusive11-13,37-35 potentially because they do not measure long-term deformation, which is essential for maintaining the corneal shape over time. In our experimental setting we applied the load gradually from the posterior surface and then measured its relaxation behavior under constant load. During the mechanical characterization, a spherical indenter applies the test load in a similar way onto the endothelium as the IOP acts in vivo, allowing for a more natural stress distribution compared to air-puff deformation measurements. Moreover, it brings the advantage that stress–strain curves of the corneal tissue can be directly recorded and separated from other ocular tissues such as the sclera. We could show that the flap-based refractive procedure FLEX, in contrast to the cap-based procedure SmILE, induced a significant corneal weakening when compared to controls. With FLEX, the Young’s modulus decreased by 5.1%, with SmILE only by 1.0%. As expected, the Young’s modulus of SmILE showed values situated between untreated corneas and FLEX-treated corneas, but the difference did not reach the level of statistical significance. This may be due to the fact that the differences were not large enough for the number of eyes treated (the observed statistical power was 75.4% for the stress comparison and 79.8% for the modulus of elasticity). Also, probably the treatment range of \textminus 14 D was not large enough to show the differences in (swollen) ex vivo porcine corneas. In a preliminary test, we evaluated a treatment range of \textminus 10 D, in which 10 porcine eyes were treated with FLEX and 10 with SmILE and compared to 10 untreated control eyes. Although some differences in corneal biomechanics were noticeable between the groups, no statistical significance was reached. We attribute the lack of significant difference to the sensitivity of the stress–strain measurements, rather than to the fact that there is no difference between SmILE and FLEX for smaller refractive corrections and therefore have increased the refractive correction to \textminus 14 D for the current study.

A limitation of this study is that although porcine corneas show a tensile strength and stress–strain relation similar to human corneas, their stress–relaxation behavior is significantly different.34 Hence, porcine corneas may not appropriately represent potential viscoelastic modifications in human corneas post refractive surgery and the results from this study cannot be directly extrapolated to the behavior of a living human cornea. Another limitation was that we did not measure and account for differences in preoperative corneal pachymetry.

We decided to use the same cap and flap thicknesses in order to make the results comparable. However, as shown by Reinstein et al.,8 thicker corneal caps for SmILE result in a better preservation of remaining tensile strength, while thinner flaps are preferred for LASIK or FLEX in order to less weaken the cornea. The effect of different cap and flap thicknesses may be evaluated in future experimental studies.

Clinically, SmILE cannot completely prevent corneal ectasia35; nevertheless, most of the cases reporting iatrogenic ectasia included patients at risk (forme fruste keratoconus).36-37 It is important to point out that biomechanically suspect cases should not undergo any refractive laser surgery and that the potential biomechanical advantage a new procedure like SmILE might offer should not be used to enlarge the spectrum of corneas eligible to surgery by performing surgery on borderline cases. In such cases, rather than an entirely different approach to refractive correction should be considered, such as phakic IOLs, refractive lens exchange, or no surgery at all. For eligible corneas, however, any procedure that offers a biomechanical advantage over current techniques is a step forward toward a safer overall procedure. Our results confirm that SmILE better preserves the corneal stress resistance. While directly after surgery the stress in the cap may be reduced due to the extraction of the lenticule, the cap can contract with time and contribute to resist the IOP.

In conclusion, we provide experimental evidence supporting the mathematical model approaches published previously8,9 with post-SmILE corneas being more stress resistant as opposed to flap-based FLEX procedure in ex vivo porcine eyes. This finding did not apply to the dynamic material properties, though. Once more sensitive in vivo techniques for the measurement of corneal biomechanics (e.g., Brillouin microscopy) become widely available, prospective noninferiority clinical studies matched by refraction, treatment zone, age, and sex may be envisaged.

Acknowledgments

Supported by the Verein zur Förderung der wissenschaftlichen Augenheilkunde in Marburg e.V. (Non-Profit Society to Promote Scientific Ophthalmology in Marburg, Germany).

Disclosure: B. Spiru, None; S. Kling, None; F. Hafezi, None; W. Sekundo, Carl Zeiss Meditec AG (C)
References

